MARK SCHEME for the May/June 2010 question paper

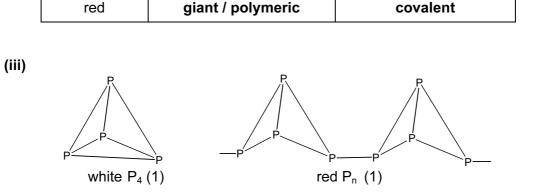
for the guidance of teachers

9701 CHEMISTRY

9701/41 Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

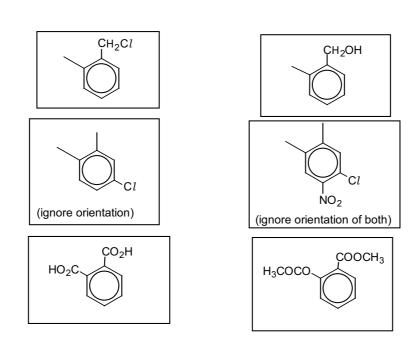
UNIVERSITY of CAMBRIDGE International Examinations

	Page 2			Paper	•		
		GCE AS/A LEVEL – May/June 2010 9701					
1	(a) P: burns with white / yellow flame <i>or</i> copious white smoke / fumes produced						
	4	P (or P ₄) + 5O ₂	$\longrightarrow P_4O_{10}$		(1)		
	S: b	ourns with blue fla	ame / choking / pungent gas p	produced	(1)		
	S	$S + O_2 \longrightarrow S$	6O ₂		(1)	[4]	
	(b) (i) 2 (ii)	2 Ca ₃ (PO ₄) ₂ + 6	$SiO_2 + 10 C \longrightarrow 1 P_4 + 6$	5 CaSiO ₃ + 10 CO	(2)		
		allotrope	type of structure	type of bonding			
		white	simple / molecular	covalent			

(in each case P has to be trivalent. Many alternatives allowable for the polymeric red P) (2) (8 max 7) [7]

[Total: 11]

(4)


	Pa	ge 3	Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – May/June 2010	9701	41	
2	(a)	variable	ions / compounds oxidation states n of complexes activity		(1) (1) (1) (4 max 3)	[3]
	(b)	(green is ppt is Ni([Ni(H ₂ O) ₆] ²⁺) OH) ₂		(1)	
		blue solu	ition is [Ni(NH ₃) ₆] ²⁺ or [Ni(NH ₃) ₄] ²⁺ or [Ni(NH ₃) ₄ (H ₂ O) ₂] ²	2+	(1)	
		formed b	y ligand exchange		(1)	
		Ni ²⁺ + 2	$OH^- \longrightarrow Ni(OH)_2$		(1)	
		Ni(OH) ₂	+ $6NH_3 \longrightarrow [Ni(NH_3)_6]^{2+} + 2OH^-$		(1) (5 max 4)	[4]
	(c)	M _r = 58	.7 + 48 + 6 + 28 + 32 = 172.7 (173)		(1)	
		n(Ni) =	4.00/172.7 = 0.0232 mol		(1)	
		mass(Ni)	= 0.0232 × 58.7 = 1.36g			
		percenta	ge = 100 × 1.36 / 3.4 = 40.0 %		(1)	[3]
					[Total:	10]
3	(a)	PbO ₂ de	composed into PbO (and O_2). (Sn O_2 is stable)			[1]
	(b)	• •	l_4 dissociates into Cl_2 and $PbCl_2$ (white solid) $bCl_4 \longrightarrow PbCl_2 + Cl_2$ or in words			
		Cl ₂	$(1) \qquad (1) \\ + 2KI \longrightarrow 2KCl + I_2$		(1)	
		E°(C	l_2/Cl^-) is more positive than $E^o(I_2/I^-)$		(1)	
		(ii) SnC	l_4 is more stable than PbC l_4 / answers using E ^o accept	ed	(1) (5 max 4)	[4]
	(c)	(i) C <i>l</i> :C	::Cl or $Cl=C-Cl$		(1)	
		+ - bent	or non-linear or angle = $100-140^{\circ}$		(1)	
		(ii) CC <i>l</i> 2	$_{2}$ + H ₂ O \longrightarrow CO + 2HCl		(1)	[3]

Page 4		ge 4	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2010	9701	41	
4	(a)	hydroge	n bonding		(1)	
		•	H ₂ CH ₂ CH ₂ OHOHCH ₂ CH ₂ NH ₂ or NH ₂ CH ₂ CH ₂ OH ond from OH group to either OH or NH ₂)	-NH ₂ CH ₂ CH ₂ OH	(1)	[2]
	(b)		nine is more basic than phenylamine lone pair on N is delocalised over ring in phenylamir ion)	ne (so less availab	(1) le for	
		or the propyl group is electron-donating, so the lone pair is more available		ore available	(1)	[2]
	(c)	c) $HOCH_2CH_2NH_2 + H^+ \longrightarrow HOCH_2CH_2NH_3^+$ or $HOCH_2CH_2NH_2 + HCl \longrightarrow HOCH_2CH_2NH_3^+Cl^-$ or $HOCH_2CH_2NH_2 + H_2O \longrightarrow HOCH_2CH_2NH_3^+OH^-$ (reaction with any acceptable Bronsted acid accepted)				
	(d)	(i) X is	CH ₃ CH ₂ CN		(1)	
		• •	1 is KCN in ethanol, heat [HCN negates] 2 is H_2 +Ni / Pt or LiAl H_4 or Na in ethanol [NOT Na	BH₄ or Sn/HC1]	(1) (1)	[3]
	(e)	ethanola Na or Cr ₂ C or MnC or PC l phenylar	D_{7}^{2-} / H^{+} D_{4}^{-} / H^{+} D_{4}^{-} / H^{+} $D_{3} / PC l_{5} / SOC l_{2}$ (1) steamy f	cence / bubbles pr rns from orange to plour disappears umes		
		Br ₂ (a	aq) decoloui	ises / white ppt fo dye formed	rmed (1)	[4]

[Total: 12]

	Page 5			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – May/June 2010	9701	41	
5	(a)	(i)	E° =	= 0.40 – (–0.83) = 1.23V		(1)	
		(ii)	$2H_2$	+ $O_2 \longrightarrow 2H_2O$		(1)	
		(iii)		electrode will become more negative electrode will also become more negative / less positive)	(1) (1)	
		(iv)	no c	hange ecf from (iii)		(1)	
		(v)	incre	eased conductance or lower cell resistance or increa	sed rate of reaction	on (1)	[6]
	(b)			1.47 - (-0.13) = 1.60V $D_2 + Pb + 4H^+ \longrightarrow 2Pb^{2+} + 2H_2O$		(1) (1)	
		(iii)	PbO	D_2 + Pb + 4H ⁺ + 2SO ₄ ²⁻ \longrightarrow 2PbSO ₄ (s) + 2H ₂ C	l i	(1)	
		(iv)	E^{o}_{cel}	u will increase		(1)	
				Pb ²⁺] decreases, E _{electrode} (PbO ₂) will become more posit become more negative	ive, but E _{electrode} (P	'b) (1)	[5]
						[Total:	11]
6	(a)	(i)	SOC	Cl_2 or PCl_5 or PCl_3		(1)	
		(ii)	or C	$CO_{2}H + SOCl_{2} \longrightarrow CH_{3}COCl + SO_{2} + HCl$ $CH_{3}CO_{2}H + PCl_{5} \longrightarrow CH_{3}COCl + POCl_{3} + HCl$ $BCH_{3}CO_{2}H + PCl_{3} \longrightarrow 3CH_{3}COCl + H_{3}PO_{3}$		(1)	[2]
	(b)	(i)		$C_6H_5CO_2C_2H_5$ $C_6H_5CONH_2$		(1) (1)	
		(ii)	este amic			(1) (1)	
		(iii)	nucl	eophilic substitution / condensation		(1)	[5]
	(c)	(i)		C <i>I</i> COCOC <i>I</i> C <i>I</i> COCOCOC <i>I</i>		(1) (1)	
		(ii)	hydr	rogen bonding		(1)	
		(iii)	or le		·		
			avai basi	lable due to electronegative oxygen [NOT: E is neutral, c]	but the diamine i	s (1)	
		(iv)	cond	densation (polymer) or polyester		(1)	[5]
						[Total:	12]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

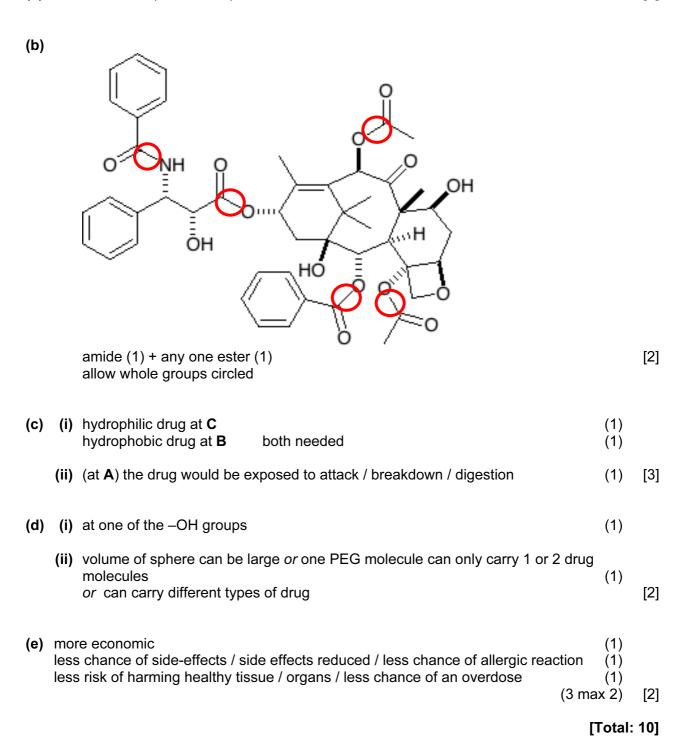
[6]

8 (a)

Block letter	Identity of compound
J	Deoxyribose (NOT "sugar" or "pentose")
К	Guanine
L	Phosphate
М	Thymine

All 4 correct score 3 marks, 3 score 2, 2 score 1	[3]
(b) hydrogen bonds (1) between the bases (1)	[2]

(c)	1 2 3 4	RNA is a single strand; DNA is double strand RNA contains ribose; DNA contains deoxyribose RNA contains <u>uracil;</u> DNA contains <u>thymine</u> RNA is shorter than DNA	(1) (1) (1) (1) (1)	101
			(4 max 3)	[3]
(d)		NA – copies the DNA gene sequence forms a template for a particular polypeptide / in protein synthesis	(1)	
	tRN	IA – carries amino acids to the ribosome	(1)	[2]
			[Total:	10]


	Page 7		ı			ne: Teachers' version			Syllabus	P	aper	
				GCE AS/A LEVEL – May/June 2010			9701		41			
9	(a)					spin states / magnetic n t an applied magnetic fie		nts			(1) (1)	[2]
	(b)	diffe pea	erent iks ar	chemical enviror	men o 3 :	1 (methyl to –OH protor		oms /	' protons are	in two) (1) (1)	[2]
	(c)	(i)										
			(CH ₃ CH ₂ CO ₂ H		CH ₃ CO ₂ CH ₃			HCO2CH2CH	3		
			р	ropanoic acid		methyl ethanoate		(ethyl methand	oate	_	
									all for (2) t	wo for	⁻ (1)	
		(ii)				or methyl ethanoate each have 3 different pi	roton	envir	onments but	the	(1)	
				strum shows only			0.011	CIIVII	Jinnenta, but	uic	(1)	
			A is	OCH ₃ , B is 0	CH₃C	0					(1)	
		(iii)		pound – propanc -OH proton	ic ac	id <i>or</i> ethyl methanoa <i>or</i> the H–CO proto					(1)	[6]
	(d)	(i)	dista	ince between atc	ms /	bond lengths / bond an	gles				(1)	
		(ii)	hydr	ogen atoms					[Tc	otal: 12	(1) 2 max	[2] 10]
											Cotol:	401

[Total: 10]

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2010	9701	41

[1]

10 (a) ester or amide (allow nitrile)

